애널리틱스 | 뉴스, 하우투, 기획, 리뷰 및 동영상
데이터가 21세기의 원유(原油)라고 할지라도 이를 시추하는 방법을 모른다면 말짱 도루묵이다. ‘데이터 생명주기(Data Lifecycle)’에는 여러 단계가 있다. 이 때문에 시추부터 생산까지
데이터에 대한 관심은 그리 새롭지 않다. 기업이 보유한 데이터에는 제대로 활용하기만 하면 꾸준히 경쟁 우위를 유지할 수 있는 잠재력이 있다는 것은 스타트업과 기존 기업 사이에 오랫
지난 서른다섯 번째 글에서 빅데이터 현상이 왜 일어나는지 같이 생각해본 바 있다. 빅데이터 현상은 사실 컴퓨터의 컴퓨팅 능력의 한계가 데이터 처
RPA 봇이 오케스트레이션을 비롯해 자동화에 필요한 프론트라인 운영 요건을 제공한다면, ‘분석 프로세스 자동화(Analytics Process Automation, APA)’ 봇은 스마트 소프트웨어를 더 스마트하
‘오토ML(AutoML)’은 개발자를 데이터 과학자로 바꿀 준비가 돼 있다. 반대 경우도 마찬가지다. 오토ML이 데이터 과학을 어떻게 더 나은 방향으로 변화시키는 걸까?
빅데이터 비즈니스 트렌드의 미래로서 사이버 물리 시스템 기반의 지능형 서비스 비즈니스를 꽤 오랜 지면을 할애해서 지난 1년간 살펴보고 있다. 이
데이터와 머신러닝 알고리즘은 값진 인사이트를 제공한다. 하지만 오류가 발생하면 회사의 평판, 매출, 생존이 위협에 처할 수 있다. 애널리틱스와 인공지능의 결함으로 인해 빚어진 참사
오늘날 기업들이 더욱더 광범위한 목적으로 데이터를 사용하기 시작했다. 인공지능(AI), 머신러닝(ML)과 같은 기술 또한 나날이 발전하고 있다. 이에 따라 애플리케이션 개발 분야에서도 &lsqu
지난주 마이크로소프트 이그나이트(Ignite) 컨퍼런스에서 발표된 신기능들은 ‘팀즈(Teams)’가 기업에 얼마나 중요해졌는지, 그리고 화상회의가 어떻게 진화할 수 있는지를 보여줬다.
지난 글에서는 정부가 1조 94억 원의 대규모 예산을 투입해서 앞으로 10년간 개발한다고 하는 PIM 방식의 인공지능 반도체 기술이 어떤 것인지